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Abstract
Poincaré recurrence for a class of circle maps is used to study the properties
of the corresponding invariant measures. In the subcritical case, when the map
is a diffeomorphism, the return time measure is smooth, and in the critical
case, when the map is only a homeomorphism, the measure is only continuous.
Furthermore, in the considered class of critical maps the behaviour of the return
time entropy depends only on the tail in the continued fraction expansion of
the rotation number.

PACS numbers: 05.45.−a, 45.05.+x

1. Introduction

Poincaré recurrence has recently gained renewed importance in the theory of dynamical
systems. It is understood that the distribution of the return times could be efficiently used as a
sensitive indicator of the statistical properties of the system dynamics (see, for example, [1–6]
and the references therein).

The general mathematical framework of the problem is that of a measure space M with a
reference measure µ and a transformation T : M → M .

The first return time, in a measurable set A ⊂ M , of a point x ∈ A, is defined by

τA(x) = inf
k

{T k(x) ∈ A}. (1)

The first return time τA for the set A, and the average return time 〈τA〉 for the set A, are
the following

τA = inf
x∈A

τA(x), 〈τA〉 =
∫

A

τA(x) dµA(x) (2)

where µA(x) is the conditional measure µA(B) = µ(B)/µ(A) for any B ⊆ A.

0305-4470/04/246243+08$30.00 © 2004 IOP Publishing Ltd Printed in the UK 6243

http://stacks.iop.org/ja/37/6243


6244 N Buric and K Todorović

For ergodic systems the limit is the same for almost every point and in this case the
average return time in the domain A is given by

〈τA〉 = 1

µ(A)
(3)

where µ is the unique ergodic invariant measure. This is a consequence of the well-known
Kac’s lemma [7, 8] which can be formulated for general measure spaces as follows: [8] let
T be an automorphism of a measure space (M, σ ,µ) and A ⊆ M with µ(A) > 0. If T is
mu-ergodic then∫

A

τA(x) dµA = 1

µ(A)
. (4)

Motivated by the Kac lemma, our aim is to use the coarse-grained mean return times in
order to study the corresponding return time entropies for a class of circle maps Tk,� of the
following form:

x → Tk,�(x) = x + � +
k

2π
f (2πx) (5)

where x ∈ R/Z and k ∈ R+ and � ∈ R+ are the parameters of the map. The function
f (2πx) is a trigonometric polynomial such that the maps are monotonic for k ∈ [0, 1)

and non-invertible for k > 1. Furthermore, we shall restrict our attention to the class
of maps where the coefficients in the trigonometric polynomial f (2πx) are such that the
map has an inflection point of the third degree at x = 0 for k = 1. Thus, all maps of
the form (5) which we shall analyse cease to be diffeomorphisms via the same type of
singularity. The details of the dynamics and the structure of the bifurcation diagram have been
thoroughly studied for the simplest example of the form (5), i.e. the sine-circle map, given by
Tk,�(x) = x +�+ k

2π
sin 2πx. Other families of the form (5) are used to study the universality

of the properties found for the sine-circle map.

2. Types of dynamics and the return times

Let us briefly recapitulate some of the properties of the circle maps (5). Here, we shall only
deal with the subcritical and the critical cases.

For k � 1 the circle map Tk,� is an orientation preserving homeomorphism of the circle,
and for k < 1 the map is a diffeomorphism. In any case, its topological properties are fixed
by the rotation number ω defined by

ω = lim
n→∞

T̄ n(θ)

n
(6)

where T̄ is the lift of T on the real line, and 0 � ω < 1 for the definition to be unique.
The map Tk,�, for k < 1 is conjugate to the linear rotation Rω by the angle ω(k,�),

i.e. there is an invertible transformation of coordinate � = �k,�(θ) on the circle, such that
�k,� ◦ Tk,� ◦ �−1

k,�� = Rω� ≡ � + ω. The properties of the conjugation �k,�(θ) depend
on the arithmetic properties of ω. For a generic rotation number �k,� is a homeomorphism
according to Denjoy’s theorem [10]. Furthermore, if ω is a diophantine irrational the
conjugation �k,� is a diffeomorphism [10].

A critical map Tk=1,� is only a homeomorphism of the circle but is still characterized by
a unique rotation number.

The lines in the (k < 1,�) plane that correspond to maps with irrational rotation numbers
become, for k > 1, domains such that a map in such a domain has at least one orbit with
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the corresponding irrational rotation number, but also has orbits with other rotation numbers
belonging to an interval consistent with the P/Q tongues that overlap. Such a map also has
many chaotic orbits with no rotation number [11–14]. The supercritical maps outside such
domains have at least one and at most two attracting periodic orbits.

The numerically observed return times for k � 1 and diophantine rotation numbers ω

are in agreement with a straightforward extension of Slater’s theorem [9] for the three return
times of the linear quasiperiodic rotation. In fact, for k < 1, it is enough to observe that any
two points θ, T n

k,�(θ) in a connected interval A are mapped into � = �k,�(θ) and Rn
ω(�)

of the connected interval �k,�(A), where �k,�(θ) is the linearizing transformation. The return
times then follow from the Slater theorem, and the fact that any map of the form (5) with k < 1
is a diffeomorphism, so that, according to Denjoy’s theorem, the linearizing transformation
is an orientation preserving homeomorphism. The critical case k = 1 is more subtle since
the critical map (5) is only a homeomorphism of the circle. However, numerical evidence,
on irrational numbers with constant or just periodic tail of the continued fraction expansion,
suggests that the statement about only three return times is true even in the critical case, with a
possible reservation concerning the class of irrational numbers. Thus, we can conjecture that
for any map in the class (5) with k � 1 and with sufficiently irrational rotation number, and
for any connected interval, there are at most three different return times, one of them being
the sum of the others.

Return times in the chaotic weakly supercritical standard circle map have been studied
in [6]. Chaotic weakly supercritical maps lie in the region where many higher order Arnold
tongues overlap. This is manifested by more then three return times into a sufficiently small
interval. Numerical computations of the return times for the chaotic weakly supercritical maps
in the class (5) lead to the same conclusions.

3. Return time entropy

The unique invariant ergodic measures, in the subcritical and in the critical cases, can be
calculated using a sequence of partitions and the corresponding coarse-grained mean return
times, as the partitions of the circle become finer. Guided by the Kac lemma, one is led
to study, for an arbitrary map of the form (5), a positive mapping that associates with each
measurable interval A ∈ S1 the inverse of the mean return time for the interval A, i.e.

µτ (A) = 〈τA〉−1. (7)

In the case of an ergodic system, according to the Kac lemma, this measure coincides
with the unique ergodic invariant measure. Thus, the ergodic measure when the map is a
homeomorphism can be approximated and studied by calculating the mean return times for a
sequence of partitions. In the supercritical case there is no unique ergodic measure. However,
the mean return times are still well defined, and it is interesting to investigate them for different
sequences of partitions.

The density ρµτ
(x) of the mean return time is defined by

µτ (A) =
∫

A

ρµτ
(x) dx (8)

where dx is the Lebesgue measure, (or more generally any reference measure).
The density ρµτ

(x) can be calculated with the help of nested intervals {Ai} that shrink on
the point x

ρµτ
(x) = lim

Ai→x

〈
τAi

〉−1 = lim
Ai→x

µτ (Ai). (9)
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Obviously, in the case the map is a homemorphism, the definition must not depend on the
choice of the intervals. Thus, in order to calculate the density we can use the sequence of
nested partitions that is best suited for the computation of the return times, like the partitions
given by the continued fraction expansion, discussed in the next section.

Next we introduce the entropy of the return times and study it using the mean return times.
Firstly, the return time entropy of a partition Pj is defined as

Sµτ
(Pj ) = −

Nj∑
i

µτ (Ai) ln µτ (Ai) =
Nj∑
i

〈
τAi

〉−1
ln

〈
τAi

〉
(10)

where Nj is the number of intervals in the j th partition, and Ai, i = 1, 2, . . . , Nj are the
elements of Pj . When Ai → 0 together with Nj → ∞ each of the summands in (10) goes to
zero. Nevertheless, the sum could remain a finite number or even diverge to +∞.

A partitionPk is said to be strictly greater than the partitionPj if it strictly refines the latter,
i.e. for every Al ∈ Pk there is an Am ∈ Pj such that Al ⊂ Am. For notational convenience we
will assume that the ordering between the partitions is mapped on the ordering of the partition
indices. Suppose that P = {Pj } is an ordered sequence of partitions. The return time entropy
of the sequence is defined by the limit:

Sµτ
(P) = lim

j→∞
Sµτ

(Pj ). (11)

Note that we do not divide Sµτ
(Pj ) by Nj in the above limit. The reason for this will become

clear later. Also, the dynamics of the map is reflected only via the properties of the return
times. There is no special construction involved in the sequence of partitions P . Any ordered
sequence could appear in (11). The return time entropy of the map is now defined as the
supremum of (11) over all ordered sequences of partitions:

S(µτ ) = supP
{
Sµτ

(P)
}
. (12)

In order to classify the critical maps it will turn out to be useful to introduce a scaling
coefficient α defined by the following condition:

lim
j→∞

Sµτ
(Pj )

α ln Nj + const
= 1 (13)

where const is an additive constant independent of j . If the limit (11) exists and is finite the
scaling coefficient of the return time entropy is zero. If the return time entropy of the sequence
of partitions diverges logarithmically the scaling coefficient is a finite positive number. If the
divergence is faster than logarithmic the coefficient is infinite.

4. Continued fraction partition

In the case k � 1 when the map (5) is a homeomorphism, the invariant measure is unique,
and, due to the Kac lemma, the limits in (11) do not depend on the sequence of partitions. On
the other hand, the return times, and their relative weights, depend on the location and the size
of the interval. However, there is a sequence of intervals, obtained by partitioning the circle
with the iterates of an initial point θ0, that is best suited for the analysis of the return times
at a point θ0 of the map with a given irrational rotation number ω. Furthermore, the union of
the intervals formed by iterates of the point θ0 gives a partition Pi of the circle, and the return
times into various intervals of the partition Pi are the same.

To construct the partition, one considers the trajectory formed by the qi−1 + qi − 1
successive iterates of a point θ0, where pi/qi are rational continued fraction approximates
of the ω. The qi th and the qi−1th iterate form the boundary of an interval Ai(θ0) which
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Figure 1. Illustration of the return time coarse-grained measure for the standard circle map, with
a sufficiently fine partition, in (a) the subcritical (k = 0.75) and (b) the critical case (k = 1).

contains only the initial point θ0 and no other points of the considered part of the trajectory.
The points generated by qi+1 + qi − 1 iterates will subdivide the intervals generated by
qi + qi−1 − 1 iterates. One obtains a sequence Ai+1 ⊆ Ai of intervals that converge to the
point θ0 on the orbit of Tk,�. Calculating the return time τAi

for such a sequence of intervals
Ai, i → ∞ is best adopted to the calculation of the return time at the point θ0 ∈ ⋂∞

i=1 Ai

[6]. Suppose that the qi−1th iterate is to the left of θ0 which is to the left of the qi th iterate.
It is proved in [6] that: in the case of the standard homeomorphism of the circle, each of the
points θ ∈ Ai(θ0) that are on the left side of θ0 have a unique first return time equal to qi , and
points θ ∈ Ai(θ0) to the right of θ0 also have a unique first return time equal to qi−1. Thus,
there are only two return times equal to qi−1 and qi . This fact greatly reduces the number of
iterations in the numerical computations of the mean return times into the intervals Ai . The
return times into various intervals of a partition Pi are the same qi and qi−1. The proof relies
on the orientation preservation of the homeomorphisms (5), and thus is valid for any map of
this form with k � 1. Furthermore, it is obvious that for the homeomorphisms of the form (5)
the return times for intervals in one partition do not depend on the initial point θ0 that is used
to construct the partition.

5. Numerical results

The main results of our computation are illustrated in figures 1, 2 and 3.
In figures 1(a) and (b) we plot, on the y-axis, the coarse-grained mean return time

〈
τAi

〉
(denoted by 〈τ 〉 in the figure) into the intervals of a partition Pj . On the x-axis, the mid-points
θi ∈ Ai of the intervals Ai are plotted. The partition is sufficiently fine, so that the figure
illustrates the density of the unique invariant ergodic measure for the considered map. The
main cost of computing the invariant measure via the return times is due to the computational
time, significantly reduced by using the continued fraction partitions, complementary to the
perturbative method where the main requirement is for a sufficient storage space.

For k < 1 the density of the return time measure is a smooth function (see figure 1(a)),
and for the critical maps the density becomes singular (figure 1(b)). This is in agreement
with the results in [15, 16]. Fractal properties of the ergodic measures for the critical circle
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Figure 2. Illustration of the convergence of the entropy for the subcritical (k = 0.75) and the
critical case. x-axes represent the number of elements in the partitions and y-axes represent the
return time entropy of the partition. Both lines are for the standard circle map with the rotation
number numerically equal to the inverse of the golden mean.
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Figure 3. Illustration of the dependence of the return time entropy on the rotation number
and the map. The axes are the same as in figure 2. The interpolated smooth curves represent
α ln Nj + const, α = 0.092 for boxes, diamonds and circles, and α = 0.17 for triangles (see the
main text).

maps (5) have been studied. There is strong evidence [16] that the class of critical maps
with the same fractal spectrum as the invariant measure are characterized only by the rotation
number (actually probably only by the tail in its continued fraction expansion [17]) and by
the type of the singularity that induces the critical behaviour. Return times have been used
by Afraimovich [18] to define a dimension in a construction similar to the construction of the
Hausdorf dimension. However, this dimension is the same number for any circle map which
is topologically conjugate to an irrational rotation.

The return time entropy is a well-defined quantity in the subcritical as well as the critical
case. The entropy S(µτ ) does not depend on the sequences of partitions that are used for its
numerical computation. The limit in its definition gives a finite number in the subcritical case.
In the critical case the entropy of a sequence of partitions diverges logarithmically. Thus, the
scaling coefficient α is zero in the subcritical case, and in the critical case it is a finite positive
number, as is illustrated in figure 2, where α = 0.092 for k = 1 and α = 0 for k = 0.75,
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both for the standard circle map with the rotation number equal to the inverse of the golden
mean. Finally, our main conclusion, illustrated in figure 3, is that in the critical case the
scaling of the entropy α is independent of the map and the particular rotation number on an
orbit of the uni-modular group. However, for the rotation numbers which are not related by a
uni-modular transformation the scaling coefficient of the return time entropy is different. In
figure 3, boxes correspond to the golden rotation number and diamonds to the rotation number
[0, 1, 2, 2, 1∞] and the standard circle map. Circles correspond to the golden rotation number
but the map is given by f (x) = sin(2πx) + 0.1 sin3(2πx). In all three cases the coefficients α

in Sµτ
(Pj ) = α ln Nj + const are the same, within the numerical error, and equal to α = 0.092.

On the other hand, triangles correspond to a rotation number [0, 1, 2∞] and the standard circle
map. For this tail, the coefficient of the logarithmic divergence is α = 0.17 clearly different
from α = 0.092. This type of universality is also shared by the fractal spectra of the critical
invariant curves.

6. Summary and conclusions

We have investigated the Poincaré recurrences for a class of homeomorphisms of the circle.
The recurrences are used to study the return time entropies.

In the subcritical and the critical case only three return times are observed. This is
theoretically and numerically justified in [6] for the case of the standard circle map. We found
that the same property appears valid for any homeomorphism of the form (5). For diophantine
rotation numbers ω this result can be presented as a corollary of Slater’s theorem on the return
times of linear irrational rotations.

The main technical tool that we have used is the special sequence of partitions, that gives a
very simple proof of the observed return times, and enables efficient calculations of the return
time measures and entropies.

An approximation to the invariant measure of the subcritical and critical maps and the
diophantine rotation numbers is obtained from the average return times. Taking a sufficiently
fine partition gives a simple method of computation of the invariant measure with an accuracy
comparable to other methods. We have then defined and calculated the return time entropy.
This quantity has the same universality properties as the fractal spectra of the critical invariant
measure.

In the supercritical case there is no unique erqodic measure. However, the mean return
times, and the coarse-grained return time entropies, are still well defined. It would be
interesting to investigate them for different sequences of partitions, and different dynamical
regimes of the supercritical maps. Another useful extension could be attempted in the analysis
of the dynamics of area-preserving maps near critical invariant circles.
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